Laser engraving is the practice of using to engraving an object. The engraving process renders a design by physically cutting into the object to remove material. The technique does not involve the use of inks or that contact the engraving surface and wear out, giving it an advantage over alternative marking technologies, where inks or bit heads have to be replaced regularly.
It is distinct from laser marking, which involves using a laser to mark an object via any of a variety of methods, including color change due to chemical alteration, charring, foaming, melting, ablation, and more.
The impact of laser marking has been more pronounced for specially designed "laserable" materials and also for some paints. These include laser-sensitive and novel metal alloys.
The choice of lasers is important for the quality of the mark. To create a clean mark, short bursts of high quality laser pulses are preferable, since they are able to transfer large amounts of energy without causing significant heating and melting of the sample. For example, engraving using femtosecond lasers enhances precision, as these lasers emit extremely short pulses that create high-resolution marks without significant heating, avoiding material distortion or alteration. This technology is especially valuable for materials where thermal effects must be minimized, like metals, plastics, and sensitive electronics.
The point where the laser beam touches the surface should be on the focal plane of the laser's optical system and is usually synonymous with its focal point. This point is typically small, perhaps less than a fraction of a millimetre (depending on the optical wavelength). Only the area inside this focal point is significantly affected when the laser beam passes over the surface. The energy delivered by the laser changes the surface of the material at the focal point. It may heat up the surface and subsequently the material, or perhaps the material may fracture (known as "glassing" or "glassing up") and flake off the surface. Cutting through the paint of a metal part is generally how material is laser engraved.
If the surface material is vaporised during laser engraving, ventilation through the use of blowers or a vacuum pump are almost always required to remove the noxious fumes and smoke arising from this process, and for removal of debris on the surface to allow the laser to continue engraving.
A laser can remove material very efficiently because the laser beam can be designed to deliver energy to the surface in a manner which converts a high percentage of the light energy into heat. The beam is highly focused and collimated—in most non-reflective materials like wood, and vitreous enamel surfaces, the conversion of light energy to heat is more than {x%} efficient. However, because of this efficiency, the equipment used in laser engraving may heat up rather quickly. Elaborate cooling systems are required for the laser. Alternatively, the laser beam may be to decrease the amount of excessive heating.
Different patterns can be engraved by programming the controller to traverse a particular path for the laser beam over time. The trace of the laser beam is carefully regulated to achieve a consistent removal depth of material. For example, criss-crossed paths are avoided to ensure that each etching surface is exposed to the laser only once, so the same amount of material is removed. The speed at which the beam moves across the material is also considered in creating engraving patterns. Changing the intensity and spread of the beam allows more flexibility in the design. For example, by changing the proportion of time (known as "duty-cycle") the laser is turned on during each pulse, the power delivered to the engraving surface can be controlled appropriately for the material.
Since the position of the laser is known exactly by the controller, it is not necessary to add barriers to the surface to prevent the laser from deviating from the prescribed engraving pattern. As a result, no resistive mask is needed in laser engraving. This is primarily why this technique is different from older engraving methods.
A good example of where laser engraving technology has been adopted into the industry norm is the production line. In this particular setup, the laser beam is directed towards a rotating or vibrating mirror. The mirror moves in a manner which may trace out numbers and letters onto the surface being marked. This is particularly useful for printing dates, expiry codes, and lot numbering of products travelling along a production line. Laser marking allows materials made of plastic and glass to be marked "on the move". The location where the marking takes place is called a "marking laser station", an entity often found in packaging and bottling plants. Older, slower technologies such as hot stamping and pad printing have largely been phased out and replaced with laser engraving.
For more precise and visually decorative engravings, a laser table (also known as an "X–Y" or "XY" table) is used. The laser is usually fixed permanently to the side of the table and emits light towards a pair of movable mirrors so that every point of the table surface can be swept by the laser. At the point of engraving, the laser beam is focused through a lens at the engraving surface, allowing very precise and intricate patterns to be traced out.
A typical setup of a laser table involves the fixed laser emitting light parallel to one Coordinate axis of the table aimed at a mirror mounted on the end of an adjustable rail. The beam reflects off the mirror at 45 degrees so that the laser travels a path exactly along the length of the rail. This beam is then reflected by another mirror mounted to a movable cart which directs the beam perpendicular to the original axis. In this scheme, two degrees of freedom (one vertical, and one horizontal) for etching can be represented.
In other laser engraving devices such as flat table or drum engraving, the laser beam is controlled to direct most of its energy a fixed penetration depth into the material to be engraved. In this manner, only a particular depth of material is removed when the engraving takes place. A simple machined stick or angle-iron can be used as a tool to help trained technologists adjust the engraver to achieve the required focusing. This setup is preferred for surfaces which do not vary in height appreciably.
For surfaces that vary in height, more elaborate focusing mechanisms have been developed. Some are known as dynamic auto-focusing systems. They adjust the lasing parameters in real time to adapt to the changes to the material as it is being etched. Typically, the height and depth of the surface are monitored with devices tracking changes to ultrasound, infrared, or visible light aimed at the engraving surface. These devices, known as pilot beams or pilot lasers (if a laser is used) help guide the adjustments made to the lens of the laser in determining the optimal spot to focus on the surface and remove material effectively.
"X–Y" laser engraving machines may operate in vector and raster graphics mode.
Vector engraving follows the line and curve of the pattern to be engraved, much like a pen-based plotter draws by constructing line segments from a description of the outlines of a pattern. Much early engraving of signs and plaques (laser or otherwise) used pre-stored font outlines so that letters, numbers or even logos could be scaled to size and reproduced with exactly defined strokes. Unfortunately, "fill character" areas were problematic, as patterns and dot-fills sometimes exhibited moiré effects or caused by the imprecise calculation of dot spacings. Moreover, rotations of a font or dynamic scaling often were beyond the capabilities of the font-rendering device. The introduction of the PostScript page-description language now allows much greater flexibility—now virtually anything that can be described in vectors by PostScript-enabled software like CorelDRAW or Adobe Illustrator can be outlined, filled with suitable patterns, and laser-engraved.
Raster engraving traces the laser across the surface in a back-and-forth slowly advancing linear pattern that will remind one of the printhead on an inkjet printer or similar printer. The pattern is usually optimized by the controller/computer so that areas to either side of the pattern which are not to be engraved are ignored and the trace across the material is thus shortened for better efficiency. The amount of advance of each line is normally less than the actual dot-size of the laser; the engraved lines overlap just slightly to create a continuity of engravure. As is true of all rasterized devices, curves and diagonals can sometimes suffer if the length or position of the raster lines varies even slightly in relation to the adjacent raster scan; therefore exact positioning and repeatability are critically important to the design of the machine. The advantage of rasterizing is the near effortless "fill" it produces. Most images to be engraved are bold letters or have large continuously engraved areas, and these are well-rasterized. Photos are rasterized (as in printing), with dots larger than that of the laser's spot, and these also are best engraved as a raster image. Almost any page-layout software can be used to feed a raster driver for an X–Y or drum laser engraver. While traditional sign and plaque engraving tended to favour the solid strokes of vectors out of necessity, modern shops tend to run their laser engravers mostly in raster mode, reserving vector for a traditional outline "look" or for speedily marking outlines or "hatching" where a plate is to be cut.
Paper masking tape is sometimes used as a pre-engraving overcoat on finished and woods so that cleanup is a matter of picking the tape off and out of the unengraved areas, which is easier than removing the sticky and smoky surround "halos" (and requires no varnish-removing chemicals).
Standard cast acrylic plastic, acrylic plastic sheet, and other cast resins generally laser very well. A commonly engraved award is a cast acrylic shape designed to be lasered from the back side. Styrene (as in compact disc cases) and many of the thermoforming plastics will tend to melt around the edge of the engraving spot. The result is usually "soft" and has no "etch" contrast. The surface may actually deform or "ripple" at the lip areas. In some applications this is acceptable; for example date markings on 2-litre soda bottles do not need to be sharp.
For signage and face plates, etc., special laser-marked plastics were developed. These incorporate silicate or other materials which conduct excess heat away from the material before it can deform. Outer of this material vaporise easily to expose different coloured material below.
Other plastics may be successfully engraved, but orderly experimentation on a sample piece is recommended. Bakelite is said to be easily laser-engraved; some hard engineering plastics work well. Expanded plastics, and vinyls, however, are generally candidates for routing rather than laser engraving. Plastics with a chlorine content (such as vinyl, PVC) produce corrosive chlorine gas when lasered, which combines with Hydrogen in the air to produce vaporised hydrochloric acid which can damage a laser engraving system. polyurethane and silicone plastics usually do not work well, unless it is a formulation filled with cellulose, stone or some other stable insulator material.
Kevlar can be laser-engraved and laser-cut. However, Kevlar does give off extremely hazardous fumes (cyanide gas) when it is vaporised.
Metals can not be easily be engraved with common 10,600nm wavelength lasers, on account of many metals having high reflectivity around this wavelength. Yb:Fiber Lasers, Nd:YVO, both emitting light of approximately 1000nm wavelength, at 1,064nm wavelength, or its harmonics at 532 and 355nm, emit light that is more readily absorbed by most metals. They are thus more suitable for the laser engraving of metals.
Anodized aluminum is commonly engraved or etched with laser machines. With power less than 40W this metal can easily be engraved with clean, impressive detail. The laser bleaches the color exposing the white or silver aluminum substrate. Although it comes in various colors, laser engraving black anodized aluminum provides the best contrast of all colors. Unlike most materials engraving anodize aluminum does not leave any smoke or residue.
Spray coatings can be obtained for the specific use of laser engraving metals, these sprays apply a coating that is visible to the laser light which fuses the coating to the substrate where the laser passed over. Typically, these sprays can also be used to engrave other optically invisible or reflective substances such as glass and are available in a variety of colours. Besides spray coatings, some laser-markable metals come pre-coated for imaging. Products such as this transform the surface of the metal to a different color (often black, brown or grey).
Jewellers found that by using a laser, they could tackle an engraving task with greater precision. In fact, jewellers discovered that laser engraving allowed for more precision than other types of engraving. At the same time, jewellers discovered that laser applied engravings had a number of other desirable features. These features include the customization, personalization, and sheer beauty of these engravings.
At one time jewellers who attempted to do laser engraving did need to use large pieces of equipment. Now the devices that perform laser engraving come in units. Some entrepreneurs have placed such units in mall kiosks. That has made laser engraving jewelers much more accessible. The makers of machines for laser engraving jewellers have developed some very specialized equipment. They have designed machines that can engrave the inside of a ring. They have also created machines that have the ability to engrave the back of a watch.
A laser can cut into both flat and curved surfaces such as the surfaces on jewelry. That points out the reason why jewellers have welcomed all the adaptations for the creation of laser engraved jewelry.
Many also prefer the legibility afforded by a laser, which often delivers a crisper appearance than other methods at a much lower cost.
Laserable materials, whether plastic or FlexiBrass, are available in a variety of colors, adding to the popularity of laser personalization for trophies and plaques. The two most popular combinations are gold lettering on a black background and black lettering on a gold background. While the same color combinations are common for plaques as well, the variety of colors used in plaque engraving is more varied.
In a new form of mirror engraving the laser pulsates through the reflective silver layer at the rear of the mirror. As a result, the glass side of a laser engraved mirror remains intact, maintaining the full reflective qualities of the original mirror.
After the engraving process in finished, the rear of the mirror needs to be "filled" with a new coating to bring out the lasered detail. When a photograph or text is laser engraved, a rear coating of solid black will lend monochromatic images the greatest definition. Coloured coatings can supply chromaticity.
Before the year 2000, lasers only produced lower-quality results in rubber-like materials due to their rough structure. In the 2000s, were introduced, giving a much-increased engraving quality directly into black polymeric materials. At the Drupa printing exhibition, the direct engraving of polymer plates was introduced. This had also an effect on the rubber developers who, in order to stay competitive, developed new high quality rubber-like materials. The development of suitable polymeric compounds has also allowed the engraving quality achievable with the fiber lasers to be realized in print. Since then, direct laser engraving of flexo-printing forms is seen by many as the modern way to make printing forms for it is the first truly digital method.
As a competitive process, more recent laser systems have been introduced to selectively engrave the thin opaque black layer of a specially produced photopolymer plate or sleeve.
With this process, the electronically generated image is scanned at speed to a photopolymer plate material that carries a thin black mask layer on the surface. The infrared laser-imaging head, which runs parallel to the drum axis, ablates the integral mask to reveal the uncured polymer underneath. A main ultraviolet exposure follows to form the image through the mask. The remaining black layer absorbs the ultraviolet radiation, which the underlying photopolymer where the black layer has been removed. The exposed digital plate still needs to be processed like a conventional flexo plate. That is, using solvent-based washout with the necessary waste recovery techniques, although some water-washable digital plates are in development. This technology has been used since 1995 and is only now becoming more widely used around the world as more affordable equipment becomes available. Trade sources say there are around 650 digital platesetters installed in label, packaging and trade platemaking houses.
Since its commercial application in the late 1990s, SSLE has become more cost-effective with a number of different sized machines ranging from small (~US$35,000–60,000) to large production-scale tables (>US$250,000). Although these machines are becoming more available, it is estimated that only a few hundred are in operation worldwide. Many machines require very expensive cooling, maintenance and calibration for proper use. The more popular SSLE engraving machines use the Diode Pumped Solid State or DPSS laser process. The laser diode, the primary component which excites a pulsed solid state laser, can easily cost one third of the machine itself and functions for a limited number of hours, although a good quality diode can last thousands of hours.
Since 2009, use of SSLE has become more cost effective to produce 3D images in souvenir 'crystal' or promotional items with only a few designers concentrating on designs incorporating large or monolithic sized crystal. A number of companies offer custom-made souvenirs, called or laser crystals, by taking 3D pictures or photos and engraving them into the crystal.
|
|